Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks

To enhance the reliability and credibility of graph neural networks (GNNs) and improve the transparency of their decision logic, a new field of explainability of GNNs (XGNN) has emerged. However, two major limitations severely degrade the performance and hinder the generalizability of existing XGNN methods: they (a) fail to capture the complete decision logic of GNNs across diverse distributions in the entire dataset's sample space, and (b) impose strict prerequisites on edge properties and GNN internal accessibility. To address these limitations, we propose OPEN, a novel c\textbf{O}mprehensive and \textbf{P}rerequisite-free \textbf{E}xplainer for G\textbf{N}Ns. OPEN, as the first work in the literature, can infer and partition the entire dataset's sample space into multiple environments, each containing graphs that follow a distinct distribution. OPEN further learns the decision logic of GNNs across different distributions by sampling subgraphs from each environment and analyzing their predictions, thus eliminating the need for strict prerequisites. Experimental results demonstrate that OPEN captures nearly complete decision logic of GNNs, outperforms state-of-the-art methods in fidelity while maintaining similar efficiency, and enhances robustness in real-world scenarios.
View on arXiv@article{zhang2025_2505.14005, title={ Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks }, author={ Han Zhang and Yan Wang and Guanfeng Liu and Pengfei Ding and Huaxiong Wang and Kwok-Yan Lam }, journal={arXiv preprint arXiv:2505.14005}, year={ 2025 } }