ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.14206
7
0

Challenges and Limitations in the Synthetic Generation of mHealth Sensor Data

20 May 2025
Flavio Di Martino
Franca Delmastro
ArXivPDFHTML
Abstract

The widespread adoption of mobile sensors has the potential to provide massive and heterogeneous time series data, driving Artificial Intelligence applications in mHealth. However, data collection remains limited due to stringent ethical regulations, privacy concerns, and other constraints, hindering progress in the field. Synthetic data generation, particularly through Generative Adversarial Networks and Diffusion Models, has emerged as a promising solution to address both data scarcity and privacy issues. Yet, these models are often limited to short-term, unimodal signal patterns. This paper presents a systematic evaluation of state-of-the-art generative models for time series synthesis, with a focus on their ability to jointly handle multi-modality, long-range dependencies, and conditional generation-key challenges in the mHealth domain. To ensure a fair comparison, we introduce a novel evaluation framework designed to measure both the intrinsic quality of synthetic data and its utility in downstream predictive tasks. Our findings reveal critical limitations in the existing approaches, particularly in maintaining cross-modal consistency, preserving temporal coherence, and ensuring robust performance in train-on-synthetic, test-on-real, and data augmentation scenarios. Finally, we present our future research directions to enhance synthetic time series generation and improve the applicability of generative models in mHealth.

View on arXiv
@article{martino2025_2505.14206,
  title={ Challenges and Limitations in the Synthetic Generation of mHealth Sensor Data },
  author={ Flavio Di Martino and Franca Delmastro },
  journal={arXiv preprint arXiv:2505.14206},
  year={ 2025 }
}
Comments on this paper