The task of graph-level out-of-distribution (OOD) detection is crucial for deploying graph neural networks in real-world settings. In this paper, we observe a significant difference in the relationship between the largest and second-largest eigenvalues of the Laplacian matrix for in-distribution (ID) and OOD graph samples: \textit{OOD samples often exhibit anomalous spectral gaps (the difference between the largest and second-largest eigenvalues)}. This observation motivates us to propose SpecGap, an effective post-hoc approach for OOD detection on graphs. SpecGap adjusts features by subtracting the component associated with the second-largest eigenvalue, scaled by the spectral gap, from the high-level features (i.e., ). SpecGap achieves state-of-the-art performance across multiple benchmark datasets. We present extensive ablation studies and comprehensive theoretical analyses to support our empirical results. As a parameter-free post-hoc method, SpecGap can be easily integrated into existing graph neural network models without requiring any additional training or model modification.
View on arXiv@article{gu2025_2505.15177, title={ SpectralGap: Graph-Level Out-of-Distribution Detection via Laplacian Eigenvalue Gaps }, author={ Jiawei Gu and Ziyue Qiao and Zechao Li }, journal={arXiv preprint arXiv:2505.15177}, year={ 2025 } }