Quantum-Evolutionary Neural Networks for Multi-Agent Federated Learning

As artificial intelligence continues to drive innovation in complex, decentralized environments, the need for scalable, adaptive, and privacy-preserving decision-making systems has become critical. This paper introduces a novel framework combining quantum-inspired neural networks with evolutionary algorithms to optimize real-time decision-making in multi-agent systems (MAS). The proposed Quantum-Evolutionary Neural Network (QE-NN) leverages quantum computing principles -- such as quantum superposition and entanglement -- to enhance learning speed and decision accuracy, while integrating evolutionary optimization to continually refine agent behaviors in dynamic, uncertain environments. By utilizing federated learning, QE-NN ensures privacy preservation, enabling decentralized agents to collaborate without sharing sensitive data. The framework is designed to allow agents to adapt in real-time to their environments, optimizing decision-making processes for applications in areas such as autonomous systems, smart cities, and healthcare. This research represents a breakthrough in merging quantum computing, evolutionary optimization, and privacy-preserving techniques to solve complex problems in multi-agent decision-making systems, pushing the boundaries of AI in real-world, privacy-sensitive applications.
View on arXiv@article{lala2025_2505.15836, title={ Quantum-Evolutionary Neural Networks for Multi-Agent Federated Learning }, author={ Aarav Lala and Kalyan Cherukuri }, journal={arXiv preprint arXiv:2505.15836}, year={ 2025 } }