ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.16487
356
0

Implicit Neural Shape Optimization for 3D High-Contrast Electrical Impedance Tomography

22 May 2025
Junqing Chen
Haibo Liu
ArXiv (abs)PDFHTML
Main:22 Pages
14 Figures
Bibliography:3 Pages
Abstract

We present a novel implicit neural shape optimization framework for 3D high-contrast Electrical Impedance Tomography (EIT), addressing scenarios where conductivity exhibits sharp discontinuities across material interfaces. These high-contrast cases, prevalent in metallic implant monitoring and industrial defect detection, challenge traditional reconstruction methods due to severe ill-posedness. Our approach synergizes shape optimization with implicit neural representations, introducing key innovations including a shape derivative-based optimization scheme that explicitly incorporates high-contrast interface conditions and an efficient latent space representation that reduces variable dimensionality. Through rigorous theoretical analysis of algorithm convergence and extensive numerical experiments, we demonstrate substantial performance improvements, establishing our framework as promising for practical applications in medical imaging with metallic implants and industrial non-destructive testing.

View on arXiv
Comments on this paper