All Papers
Title |
|---|
Title |
|---|

Accurate temporal extrapolation remains a fundamental challenge for neural operators modeling dynamical systems, where predictions must extend far beyond the training horizon. Conventional DeepONet approaches rely on two limited paradigms: fixed-horizon rollouts, which predict full spatiotemporal solutions while ignoring temporal causality, and autoregressive schemes, which accumulate errors through sequential prediction. We introduce TI-DeepONet, a framework that integrates neural operators with adaptive numerical time-stepping to preserve the Markovian structure of dynamical systems while mitigating long-term error growth. Our method shifts the learning objective from direct state prediction to approximating instantaneous time-derivative fields, which are then integrated using standard numerical solvers. This naturally enables continuous-time prediction and allows the use of higher-order integrators at inference than those used in training, improving both efficiency and accuracy. We further propose TI(L)-DeepONet, which incorporates learnable coefficients for intermediate slopes in multi-stage integration, adapting to solution-specific dynamics and enhancing fidelity. Across four canonical PDEs featuring chaotic, dissipative, dispersive, and high-dimensional behavior, TI(L)-DeepONet slightly outperforms TI-DeepONet, and both achieve major reductions in relative L2 extrapolation error: about 81% compared to autoregressive methods and 70% compared to fixed-horizon approaches. Notably, both models maintain stable predictions over temporal domains nearly twice the training interval. This work establishes a physics-aware operator learning framework that bridges neural approximation with numerical analysis principles, addressing a key gap in long-term forecasting of complex physical systems.
View on arXiv