ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17410
135
1

LLM-based Generative Error Correction for Rare Words with Synthetic Data and Phonetic Context

23 May 2025
Natsuo Yamashita
Masaaki Yamamoto
Hiroaki Kokubo
Yohei Kawaguchi
ArXiv (abs)PDFHTML
Main:4 Pages
3 Figures
Bibliography:1 Pages
5 Tables
Abstract

Generative error correction (GER) with large language models (LLMs) has emerged as an effective post-processing approach to improve automatic speech recognition (ASR) performance. However, it often struggles with rare or domain-specific words due to limited training data. Furthermore, existing LLM-based GER approaches primarily rely on textual information, neglecting phonetic cues, which leads to over-correction. To address these issues, we propose a novel LLM-based GER approach that targets rare words and incorporates phonetic information. First, we generate synthetic data to contain rare words for fine-tuning the GER model. Second, we integrate ASR's N-best hypotheses along with phonetic context to mitigate over-correction. Experimental results show that our method not only improves the correction of rare words but also reduces the WER and CER across both English and Japanese datasets.

View on arXiv
Comments on this paper