ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17860
1.0K
2
v1v2 (latest)

Multi-Person Interaction Generation from Two-Person Motion Priors

23 May 2025
Wenning Xu
Shiyu Fan
Paul Henderson
Edmond S. L. Ho
    DiffM
ArXiv (abs)PDFHTML
Main:8 Pages
9 Figures
Bibliography:3 Pages
6 Tables
Appendix:1 Pages
Abstract

Generating realistic human motion with high-level controls is a crucial task for social understanding, robotics, and animation. With high-quality MOCAP data becoming more available recently, a wide range of data-driven approaches have been presented. However, modelling multi-person interactions still remains a less explored area. In this paper, we present Graph-driven Interaction Sampling, a method that can generate realistic and diverse multi-person interactions by leveraging existing two-person motion diffusion models as motion priors. Instead of training a new model specific to multi-person interaction synthesis, our key insight is to spatially and temporally separate complex multi-person interactions into a graph structure of two-person interactions, which we name the Pairwise Interaction Graph. We thus decompose the generation task into simultaneous single-person motion generation conditioned on one other's motion. In addition, to reduce artifacts such as interpenetrations of body parts in generated multi-person interactions, we introduce two graph-dependent guidance terms into the diffusion sampling scheme. Unlike previous work, our method can produce various high-quality multi-person interactions without having repetitive individual motions. Extensive experiments demonstrate that our approach consistently outperforms existing methods in reducing artifacts when generating a wide range of two-person and multi-person interactions.

View on arXiv
Comments on this paper