ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.21196
210
0

Learning Annotation Consensus for Continuous Emotion Recognition

27 May 2025
Ibrahim Shoer
E. Erzin
ArXiv (abs)PDFHTML
Main:3 Pages
1 Figures
Bibliography:2 Pages
1 Tables
Abstract

In affective computing, datasets often contain multiple annotations from different annotators, which may lack full agreement. Typically, these annotations are merged into a single gold standard label, potentially losing valuable inter-rater variability. We propose a multi-annotator training approach for continuous emotion recognition (CER) that seeks a consensus across all annotators rather than relying on a single reference label. Our method employs a consensus network to aggregate annotations into a unified representation, guiding the main arousal-valence predictor to better reflect collective inputs. Tested on the RECOLA and COGNIMUSE datasets, our approach outperforms traditional methods that unify annotations into a single label. This underscores the benefits of fully leveraging multi-annotator data in emotion recognition and highlights its applicability across various fields where annotations are abundant yet inconsistent.

View on arXiv
Comments on this paper