DecisionFlow: Advancing Large Language Model as Principled Decision Maker
- AIFin

In high-stakes domains such as healthcare and finance, effective decision-making demands not just accurate outcomes but transparent and explainable reasoning. However, current language models often lack the structured deliberation needed for such tasks, instead generating decisions and justifications in a disconnected, post-hoc manner. To address this, we propose DecisionFlow, a novel decision modeling framework that guides models to reason over structured representations of actions, attributes, and constraints. Rather than predicting answers directly from prompts, DecisionFlow builds a semantically grounded decision space and infers a latent utility function to evaluate trade-offs in a transparent, utility-driven manner. This process produces decisions tightly coupled with interpretable rationales reflecting the model's reasoning. Empirical results on two high-stakes benchmarks show that DecisionFlow not only achieves up to 30% accuracy gains over strong prompting baselines but also enhances alignment in outcomes. Our work is a critical step toward integrating symbolic reasoning with LLMs, enabling more accountable, explainable, and reliable LLM decision support systems. We release the data and code at this https URL.
View on arXiv