ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.21465
146
1

ID-Align: RoPE-Conscious Position Remapping for Dynamic High-Resolution Adaptation in Vision-Language Models

27 May 2025
Bozhou Li
Wentao Zhang
    VLM
ArXiv (abs)PDFHTML
Main:7 Pages
17 Figures
Bibliography:3 Pages
6 Tables
Appendix:8 Pages
Abstract

Currently, a prevalent approach for enhancing Vision-Language Models (VLMs) performance is to encode both the high-resolution version and the thumbnail of an image simultaneously. While effective, this method generates a large number of image tokens. When combined with the widely used Rotary Position Embedding (RoPE), its long-term decay property hinders the interaction between high-resolution tokens and thumbnail tokens, as well as between text and image. To address these issues, we propose ID-Align, which alleviates these problems by reordering position IDs. In this method, high-resolution tokens inherit IDs from their corresponding thumbnail token while constraining the overexpansion of positional indices. Our experiments conducted within the LLaVA-Next framework demonstrate that ID-Align achieves significant improvements, including a 6.09% enhancement on MMBench's relation reasoning tasks and notable gains across multiple benchmarks. Our code is available at the following link:this https URL.

View on arXiv
Comments on this paper