ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.21531
173
0
v1v2 (latest)

How Much Do Large Language Models Know about Human Motion? A Case Study in 3D Avatar Control

23 May 2025
Kunhang Li
Jason Naradowsky
Yansong Feng
Yusuke Miyao
ArXiv (abs)PDFHTMLGithub
Main:9 Pages
21 Figures
Bibliography:1 Pages
23 Tables
Appendix:34 Pages
Abstract

We explore Large Language Models (LLMs)' human motion knowledge through 3D avatar control. Given a motion instruction, we prompt LLMs to first generate a high-level movement plan with consecutive steps (High-level Planning), then specify body part positions in each step (Low-level Planning), which we linearly interpolate into avatar animations as a clear verification lens for human evaluators. Through carefully designed 20 representative motion instructions with full coverage of basic movement primitives and balanced body part usage, we conduct comprehensive evaluations including human assessment of both generated animations and high-level movement plans, as well as automatic comparison with oracle positions in low-level planning. We find that LLMs are strong at interpreting the high-level body movements but struggle with precise body part positioning. While breaking down motion queries into atomic components improves planning performance, LLMs have difficulty with multi-step movements involving high-degree-of-freedom body parts. Furthermore, LLMs provide reasonable approximation for general spatial descriptions, but fail to handle precise spatial specifications in text, and the precise spatial-temporal parameters needed for avatar control. Notably, LLMs show promise in conceptualizing creative motions and distinguishing culturally-specific motion patterns.

View on arXiv
Comments on this paper