ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.22494
  4. Cited By
ProSpero: Active Learning for Robust Protein Design Beyond Wild-Type Neighborhoods
v1v2 (latest)

ProSpero: Active Learning for Robust Protein Design Beyond Wild-Type Neighborhoods

28 May 2025
Michal Kmicikiewicz
Vincent Fortuin
Ewa Szczurek
    OnRL
ArXiv (abs)PDFHTMLGithub (2★)

Papers citing "ProSpero: Active Learning for Robust Protein Design Beyond Wild-Type Neighborhoods"

2 / 2 papers shown
Title
seqme: a Python library for evaluating biological sequence design
seqme: a Python library for evaluating biological sequence design
Rasmus Møller-Larsen
Adam Izdebski
Jan Olszewski
Pankhil Gawade
Michal Kmicikiewicz
Wojciech Zarzecki
Ewa Szczurek
28
0
0
06 Nov 2025
Overconfident Oracles: Limitations of In Silico Sequence Design Benchmarking
Shikha Surana
Nathan Grinsztajn
Timothy Atkinson
Paul Duckworth
Thomas D. Barrett
158
4
0
24 Feb 2025
1