ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.23481
48
0
v1v2 (latest)

PhysicsNeRF: Physics-Guided 3D Reconstruction from Sparse Views

29 May 2025
Mohamed Rayan Barhdadi
Hasan Kurban
Hussein Alnuweiri
ArXiv (abs)PDFHTML
Main:3 Pages
2 Figures
Bibliography:1 Pages
2 Tables
Abstract

PhysicsNeRF is a physically grounded framework for 3D reconstruction from sparse views, extending Neural Radiance Fields with four complementary constraints: depth ranking, RegNeRF-style consistency, sparsity priors, and cross-view alignment. While standard NeRFs fail under sparse supervision, PhysicsNeRF employs a compact 0.67M-parameter architecture and achieves 21.4 dB average PSNR using only 8 views, outperforming prior methods. A generalization gap of 5.7-6.2 dB is consistently observed and analyzed, revealing fundamental limitations of sparse-view reconstruction. PhysicsNeRF enables physically consistent, generalizable 3D representations for agent interaction and simulation, and clarifies the expressiveness-generalization trade-off in constrained NeRF models.

View on arXiv
@article{barhdadi2025_2505.23481,
  title={ PhysicsNeRF: Physics-Guided 3D Reconstruction from Sparse Views },
  author={ Mohamed Rayan Barhdadi and Hasan Kurban and Hussein Alnuweiri },
  journal={arXiv preprint arXiv:2505.23481},
  year={ 2025 }
}
Comments on this paper