Blockchain-Enabled Privacy-Preserving Second-Order Federated Edge Learning in Personalized Healthcare

Federated learning (FL) has attracted increasing attention to mitigate security and privacy challenges in traditional cloud-centric machine learning models specifically in healthcare ecosystems. FL methodologies enable the training of global models through localized policies, allowing independent operations at the edge clients' level. Conventional first-order FL approaches face several challenges in personalized model training due to heterogeneous non-independent and identically distributed (non-iid) data of each edge client. Recently, second-order FL approaches maintain the stability and consistency of non-iid datasets while improving personalized model training. This study proposes and develops a verifiable and auditable optimized second-order FL framework BFEL (blockchain-enhanced federated edge learning) based on optimized FedCurv for personalized healthcare systems. FedCurv incorporates information about the importance of each parameter to each client's task (through Fisher Information Matrix) which helps to preserve client-specific knowledge and reduce model drift during aggregation. Moreover, it minimizes communication rounds required to achieve a target precision convergence for each edge client while effectively managing personalized training on non-iid and heterogeneous data. The incorporation of Ethereum-based model aggregation ensures trust, verifiability, and auditability while public key encryption enhances privacy and security. Experimental results of federated CNNs and MLPs utilizing Mnist, Cifar-10, and PathMnist demonstrate the high efficiency and scalability of the proposed framework.
View on arXiv@article{nawaz2025_2506.00416, title={ Blockchain-Enabled Privacy-Preserving Second-Order Federated Edge Learning in Personalized Healthcare }, author={ Anum Nawaz and Muhammad Irfan and Xianjia Yu and Zhuo Zou and Tomi Westerlund }, journal={arXiv preprint arXiv:2506.00416}, year={ 2025 } }