HRTR: A Single-stage Transformer for Fine-grained Sub-second Action Segmentation in Stroke Rehabilitation

Main:4 Pages
4 Figures
4 Tables
Appendix:2 Pages
Abstract
Stroke rehabilitation often demands precise tracking of patient movements to monitor progress, with complexities of rehabilitation exercises presenting two critical challenges: fine-grained and sub-second (under one-second) action detection. In this work, we propose the High Resolution Temporal Transformer (HRTR), to time-localize and classify high-resolution (fine-grained), sub-second actions in a single-stage transformer, eliminating the need for multi-stage methods and post-processing. Without any refinements, HRTR outperforms state-of-the-art systems on both stroke related and general datasets, achieving Edit Score (ES) of 70.1 on StrokeRehab Video, 69.4 on StrokeRehab IMU, and 88.4 on 50Salads.
View on arXivComments on this paper
