ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.03181
121
0

Dc-EEMF: Pushing depth-of-field limit of photoacoustic microscopy via decision-level constrained learning

29 May 2025
Wangting Zhou
Jiangshan He
Tong Cai
Lin Wang
Zhen Yuan
Xunbin Wei
Xueli Chen
ArXiv (abs)PDFHTML
Main:11 Pages
6 Figures
Bibliography:2 Pages
Abstract

Photoacoustic microscopy holds the potential to measure biomarkers' structural and functional status without labels, which significantly aids in comprehending pathophysiological conditions in biomedical research. However, conventional optical-resolution photoacoustic microscopy (OR-PAM) is hindered by a limited depth-of-field (DoF) due to the narrow depth range focused on a Gaussian beam. Consequently, it fails to resolve sufficient details in the depth direction. Herein, we propose a decision-level constrained end-to-end multi-focus image fusion (Dc-EEMF) to push DoF limit of PAM. The DC-EEMF method is a lightweight siamese network that incorporates an artifact-resistant channel-wise spatial frequency as its feature fusion rule. The meticulously crafted U-Net-based perceptual loss function for decision-level focus properties in end-to-end fusion seamlessly integrates the complementary advantages of spatial domain and transform domain methods within Dc-EEMF. This approach can be trained end-to-end without necessitating post-processing procedures. Experimental results and numerical analyses collectively demonstrate our method's robust performance, achieving an impressive fusion result for PAM images without a substantial sacrifice in lateral resolution. The utilization of Dc-EEMF-powered PAM has the potential to serve as a practical tool in preclinical and clinical studies requiring extended DoF for various applications.

View on arXiv
Comments on this paper