Natural disasters have caused significant losses to human society, and the timely and efficient acquisition of post-disaster environmental information is crucial for the effective implementation of rescue operations. Due to the complexity of post-disaster environments, existing sensing technologies face challenges such as weak environmental adaptability, insufficient specialized sensing capabilities, and limited practicality of sensing solutions. This paper explores the heterogeneous multi-agent online autonomous collaborative scheduling algorithm HoAs-PALN, aimed at achieving efficient collection of post-disaster environmental information. HoAs-PALN is realized through adaptive dimensionality reduction in the matching process and local Nash equilibrium game, facilitating autonomous collaboration among time-dependent UAVs, workers and vehicles to enhance sensing scheduling. (1) In terms of adaptive dimensionality reduction during the matching process, HoAs-PALN significantly reduces scheduling decision time by transforming a five-dimensional matching process into two categories of three-dimensional matching processes; (2) Regarding the local Nash equilibrium game, HoAs-PALN combines the softmax function to optimize behavior selection probabilities and introduces a local Nash equilibrium determination mechanism to ensure scheduling decision performance. Finally, we conducted detailed experiments based on extensive real-world and simulated data. Compared with the baselines (GREEDY, K-WTA, MADL and MARL), HoAs-PALN improves task completion rates by 64.12%, 46.48%, 16.55%, and 14.03% on average, respectively, while each online scheduling decision takes less than 10 seconds, demonstrating its effectiveness in dynamic post-disaster environments.
View on arXiv@article{han2025_2506.04276, title={ Autonomous Collaborative Scheduling of Time-dependent UAVs, Workers and Vehicles for Crowdsensing in Disaster Response }, author={ Lei Han and Yitong Guo and Pengfei Yang and Zhiyong Yu and Liang Wang and Quan Wang and Zhiwen Yu }, journal={arXiv preprint arXiv:2506.04276}, year={ 2025 } }