347

Revisiting Test-Time Scaling: A Survey and a Diversity-Aware Method for Efficient Reasoning

Abstract

Test-Time Scaling (TTS) improves the reasoning performance of Large Language Models (LLMs) by allocating additional compute during inference. We conduct a structured survey of TTS methods and categorize them into sampling-based, search-based, and trajectory optimization strategies. We observe that reasoning-optimized models often produce less diverse outputs, which limits TTS effectiveness. To address this, we propose ADAPT (A Diversity Aware Prefix fine-Tuning), a lightweight method that applies prefix tuning with a diversity-focused data strategy. Experiments on mathematical reasoning tasks show that ADAPT reaches 80% accuracy using eight times less compute than strong baselines. Our findings highlight the essential role of generative diversity in maximizing TTS effectiveness.

View on arXiv
Main:8 Pages
6 Figures
Bibliography:7 Pages
2 Tables
Appendix:1 Pages
Comments on this paper