71
v1v2 (latest)

Rescaled Influence Functions: Accurate Data Attribution in High Dimension

Main:12 Pages
6 Figures
Bibliography:5 Pages
4 Tables
Appendix:13 Pages
Abstract

How does the training data affect a model's behavior? This is the question we seek to answer with data attribution. The leading practical approaches to data attribution are based on influence functions (IF). IFs utilize a first-order Taylor approximation to efficiently predict the effect of removing a set of samples from the training set without retraining the model, and are used in a wide variety of machine learning applications. However, especially in the high-dimensional regime (# params Ω(\geq \Omega(# samples))), they are often imprecise and tend to underestimate the effect of sample removals, even for simple models such as logistic regression. We present rescaled influence functions (RIF), a new tool for data attribution which can be used as a drop-in replacement for influence functions, with little computational overhead but significant improvement in accuracy. We compare IF and RIF on a range of real-world datasets, showing that RIFs offer significantly better predictions in practice, and present a theoretical analysis explaining this improvement. Finally, we present a simple class of data poisoning attacks that would fool IF-based detections but would be detected by RIF.

View on arXiv
Comments on this paper