ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.08961
183
0

Towards Robust Deep Reinforcement Learning against Environmental State Perturbation

10 June 2025
Chenxu Wang
Huaping Liu
    AAML
ArXiv (abs)PDFHTML
Abstract

Adversarial attacks and robustness in Deep Reinforcement Learning (DRL) have been widely studied in various threat models; however, few consider environmental state perturbations, which are natural in embodied scenarios. To improve the robustness of DRL agents, we formulate the problem of environmental state perturbation, introducing a preliminary non-targeted attack method as a calibration adversary, and then propose a defense framework, named Boosted Adversarial Training (BAT), which first tunes the agents via supervised learning to avoid catastrophic failure and subsequently adversarially trains the agent with reinforcement learning. Extensive experimental results substantiate the vulnerability of mainstream agents under environmental state perturbations and the effectiveness of our proposed attack. The defense results demonstrate that while existing robust reinforcement learning algorithms may not be suitable, our BAT framework can significantly enhance the robustness of agents against environmental state perturbations across various situations.

View on arXiv
Main:7 Pages
5 Figures
Bibliography:1 Pages
2 Tables
Comments on this paper