mLaSDI: Multi-stage latent space dynamics identification
- AI4CE

Accurately solving partial differential equations (PDEs) is essential across many scientific disciplines. However, high-fidelity solvers can be computationally prohibitive, motivating the development of reduced-order models (ROMs). Recently, Latent Space Dynamics Identification (LaSDI) was proposed as a data-driven, non-intrusive ROM framework. LaSDI compresses the training data via an autoencoder and learns user-specified ordinary differential equations (ODEs), governing the latent dynamics, enabling rapid predictions for unseen parameters. While LaSDI has produced effective ROMs for numerous problems, the autoencoder must simultaneously reconstruct the training data and satisfy the imposed latent dynamics, which are often competing objectives that limit accuracy, particularly for complex or high-frequency phenomena. To address this limitation, we propose multi-stage Latent Space Dynamics Identification (mLaSDI). With mLaSDI, we train LaSDI sequentially in stages. After training the initial autoencoder, we train additional decoders which map the latent trajectories to residuals from previous stages. This staged residual learning, combined with periodic activation functions, enables recovery of high-frequency content without sacrificing interpretability of the latent dynamics. Numerical experiments on a multiscale oscillating system, unsteady wake flow, and the 1D-1V Vlasov equation demonstrate that mLaSDI achieves significantly lower reconstruction and prediction errors, often by an order of magnitude, while requiring less training time and reduced hyperparameter tuning compared to standard LaSDI.
View on arXiv