MetricHMSR:Metric Human Mesh and Scene Recovery from Monocular Images

We introduce MetricHMSR (Metric Human Mesh and Scene Recovery), a novel approach for metric human mesh and scene recovery from monocular images. Due to unrealistic assumptions in the camera model and inherent challenges in metric perception, existing approaches struggle to achieve human pose and metric 3D position estimation through a unified module. To address this limitation, MetricHMSR incorporates camera rays to comprehensively encode both the bounding box information and the intrinsic parameters of perspective projection. Then we proposed Human Mixture-of-Experts (MoE), the model dynamically routes image features and ray features to task-specific experts for specialized understanding of different data aspects, enabling a unified framework that simultaneously perceives the local pose and the global 3D position. Based on the results above, we further refine the existing monocular metric depth estimation method to achieve more accurate results, ultimately enabling the seamless overlay of humans and scenes in 3D space. Comprehensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on both human mesh and scene recovery.
View on arXiv