255
v1v2v3 (latest)

Leveraging Clinical Text and Class Conditioning for 3D Prostate MRI Generation

Main:10 Pages
2 Figures
Bibliography:3 Pages
5 Tables
Abstract

Objective: Latent diffusion models (LDM) could alleviate data scarcity challenges affecting machine learning development for medical imaging. However, medical LDM strategies typically rely on short-prompt text encoders, nonmedical LDMs, or large data volumes. These strategies can limit performance and scientific accessibility. We propose a novel LDM conditioning approach to address these limitations. Methods: We propose Class-Conditioned Efficient Large Language model Adapter (CCELLA), a novel dual-head conditioning approach that simultaneously conditions the LDM U-Net with free-text clinical reports and radiology classification. We also propose a data-efficient LDM pipeline centered around CCELLA and a proposed joint loss function. We first evaluate our method on 3D prostate MRI against state-of-the-art. We then augment a downstream classifier model training dataset with synthetic images from our method. Results: Our method achieves a 3D FID score of 0.025 on a size-limited 3D prostate MRI dataset, significantly outperforming a recent foundation model with FID 0.070. When training a classifier for prostate cancer prediction, adding synthetic images generated by our method during training improves classifier accuracy from 69% to 74% and outperforms classifiers trained on images generated by prior state-of-the-art. Classifier training solely on our method's synthetic images achieved comparable performance to real image training. Conclusion: We show that our method improved both synthetic image quality and downstream classifier performance using limited data and minimal human annotation. Significance: The proposed CCELLA-centric pipeline enables radiology report and class-conditioned LDM training for high-quality medical image synthesis given limited data volume and human data annotation, improving LDM performance and scientific accessibility.

View on arXiv
Comments on this paper