ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.11067
254
0
v1v2 (latest)

A Large Language Model Based Pipeline for Review of Systems Entity Recognition from Clinical Notes

31 May 2025
Hieu Nghiem
Hemanth Reddy Singareddy
Zhuqi Miao
Jivan Lamichhane
Abdulaziz Ahmed
Johnson Thomas
Dursun Delen
William Paiva
    LM&MA
ArXiv (abs)PDFHTMLGithub
Main:31 Pages
5 Figures
3 Tables
Abstract

Objective: Develop a cost-effective, large language model (LLM)-based pipeline for automatically extracting Review of Systems (ROS) entities from clinical notes. Materials and Methods: The pipeline extracts ROS sections using SecTag, followed by few-shot LLMs to identify ROS entity spans, their positive/negative status, and associated body systems. We implemented the pipeline using open-source LLMs (Mistral, Llama, Gemma) and ChatGPT. The evaluation was conducted on 36 general medicine notes containing 341 annotated ROS entities. Results: When integrating ChatGPT, the pipeline achieved the lowest error rates in detecting ROS entity spans and their corresponding statuses/systems (28.2% and 14.5%, respectively). Open-source LLMs enable local, cost-efficient execution of the pipeline while delivering promising performance with similarly low error rates (span: 30.5-36.7%; status/system: 24.3-27.3%). Discussion and Conclusion: Our pipeline offers a scalable and locally deployable solution to reduce ROS documentation burden. Open-source LLMs present a viable alternative to commercial models in resource-limited healthcare environments.

View on arXiv
Comments on this paper