134
v1v2 (latest)

EXGnet: a single-lead explainable-AI guided multiresolution network with train-only quantitative features for trustworthy ECG arrhythmia classification

Main:15 Pages
11 Figures
Bibliography:2 Pages
7 Tables
Abstract

Deep learning has significantly propelled the performance of ECG arrhythmia classification, yet its clinical adoption remains hindered by challenges in interpretability and deployment on resource-constrained edge devices. To bridge this gap, we propose EXGnet, a novel and reliable ECG arrhythmia classification network tailored for single-lead signals, specifically designed to balance high accuracy, explainability, and edge compatibility. EXGnet integrates XAI supervision during training via a normalized cross-correlation based loss, directing the model's attention to clinically relevant ECG regions, similar to a cardiologist's focus. This supervision is driven by automatically generated ground truth, derived through an innovative heart rate variability-based approach, without the need for manual annotation. To enhance classification accuracy without compromising deployment simplicity, we incorporate quantitative ECG features during training. These enrich the model with multi-domain knowledge but are excluded during inference, keeping the model lightweight for edge deployment. Additionally, we introduce an innovative multiresolution block to efficiently capture both short and long-term signal features while maintaining computational efficiency. Rigorous evaluation on the Chapman and Ningbo benchmark datasets validates the supremacy of EXGnet, which achieves average five-fold accuracies of 98.762% and 96.932%, and F1-scores of 97.910% and 95.527%, respectively. Comprehensive ablation studies and both quantitative and qualitative interpretability assessment confirm that the XAI guidance is pivotal, demonstrably enhancing the model's focus and trustworthiness. Overall, EXGnet sets a new benchmark by combining high-performance arrhythmia classification with interpretability, paving the way for more trustworthy and accessible portable ECG based health monitoring systems.

View on arXiv
Comments on this paper