Quantum reservoir computing uses the dynamics of quantum systems to process temporal data, making it particularly well-suited for learning with noisy intermediate-scale quantum devices. Early experimental proposals, such as the restarting and rewinding protocols, relied on repeating previous steps of the quantum map to avoid backaction. However, this approach compromises real-time processing and increases computational overhead. Recent developments have introduced alternative protocols that address these limitations. These include online, mid-circuit measurement, and feedback techniques, which enable real-time computation while preserving the input history. Among these, the feedback protocol stands out for its ability to process temporal information with comparatively fewer components. Despite this potential advantage, the theoretical foundations of feedback-based quantum reservoir computing remain underdeveloped, particularly with regard to the universality and the approximation capabilities of this approach. This paper addresses this issue by presenting a recurrent quantum neural network architecture that extends a class of existing feedforward models to a dynamic, feedback-driven reservoir setting. We provide theoretical guarantees for variational recurrent quantum neural networks, including approximation bounds and universality results. Notably, our analysis demonstrates that the model is universal with linear readouts, making it both powerful and experimentally accessible. These results pave the way for practical and theoretically grounded quantum reservoir computing with real-time processing capabilities.
View on arXiv@article{gonon2025_2506.16332, title={ Feedback-driven recurrent quantum neural network universality }, author={ Lukas Gonon and Rodrigo Martínez-Peña and Juan-Pablo Ortega }, journal={arXiv preprint arXiv:2506.16332}, year={ 2025 } }