Experimental Setup and Software Pipeline to Evaluate Optimization based Autonomous Multi-Robot Search Algorithms

Signal source localization has been a problem of interest in the multi-robot systems domain given its applications in search & rescue and hazard localization in various industrial and outdoor settings. A variety of multi-robot search algorithms exist that usually formulate and solve the associated autonomous motion planning problem as a heuristic model-free or belief model-based optimization process. Most of these algorithms however remains tested only in simulation, thereby losing the opportunity to generate knowledge about how such algorithms would compare/contrast in a real physical setting in terms of search performance and real-time computing performance. To address this gap, this paper presents a new lab-scale physical setup and associated open-source software pipeline to evaluate and benchmark multi-robot search algorithms. The presented physical setup innovatively uses an acoustic source (that is safe and inexpensive) and small ground robots (e-pucks) operating in a standard motion-capture environment. This setup can be easily recreated and used by most robotics researchers. The acoustic source also presents interesting uncertainty in terms of its noise-to-signal ratio, which is useful to assess sim-to-real gaps. The overall software pipeline is designed to readily interface with any multi-robot search algorithm with minimal effort and is executable in parallel asynchronous form. This pipeline includes a framework for distributed implementation of multi-robot or swarm search algorithms, integrated with a ROS (Robotics Operating System)-based software stack for motion capture supported localization. The utility of this novel setup is demonstrated by using it to evaluate two state-of-the-art multi-robot search algorithms, based on swarm optimization and batch-Bayesian Optimization (called Bayes-Swarm), as well as a random walk baseline.
View on arXiv@article{bhatt2025_2506.16710, title={ Experimental Setup and Software Pipeline to Evaluate Optimization based Autonomous Multi-Robot Search Algorithms }, author={ Aditya Bhatt and Mary Katherine Corra and Franklin Merlo and Prajit KrisshnaKumar and Souma Chowdhury }, journal={arXiv preprint arXiv:2506.16710}, year={ 2025 } }