ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.16773
53
0

Infrared and Visible Image Fusion Based on Implicit Neural Representations

Cyber .. (CYBER), 2025
20 June 2025
Shuchen Sun
Ligen Shi
Chang Liu
Lina Wu
Jun Qiu
ArXiv (abs)PDFHTML
Main:5 Pages
3 Figures
Bibliography:1 Pages
Abstract

Infrared and visible light image fusion aims to combine the strengths of both modalities to generate images that are rich in information and fulfill visual or computational requirements. This paper proposes an image fusion method based on Implicit Neural Representations (INR), referred to as INRFuse. This method parameterizes a continuous function through a neural network to implicitly represent the multimodal information of the image, breaking through the traditional reliance on discrete pixels or explicit features. The normalized spatial coordinates of the infrared and visible light images serve as inputs, and multi-layer perceptrons is utilized to adaptively fuse the features of both modalities, resulting in the output of the fused image. By designing multiple loss functions, the method jointly optimizes the similarity between the fused image and the original images, effectively preserving the thermal radiation information of the infrared image while maintaining the texture details of the visible light image. Furthermore, the resolution-independent characteristic of INR allows for the direct fusion of images with varying resolutions and achieves super-resolution reconstruction through high-density coordinate queries. Experimental results indicate that INRFuse outperforms existing methods in both subjective visual quality and objective evaluation metrics, producing fused images with clear structures, natural details, and rich information without the necessity for a training dataset.

View on arXiv
Comments on this paper