All Papers
Title |
|---|
Title |
|---|

Concept-based explainable artificial intelligence (C-XAI) can let people see which representations an AI model has learned. This is particularly important when high-level semantic information (e.g., actions and relations) is used to make decisions about abstract categories (e.g., danger). In such tasks, AI models need to generalise beyond situation-specific details, and this ability can be reflected in C-XAI outputs that randomise over irrelevant features. However, it is unclear whether people appreciate such generalisation and can distinguish it from other, less desirable forms of imprecision in C-XAI outputs. Therefore, the present study investigated how the generality and relevance of C-XAI outputs affect people's evaluation of AI. In an experimental railway safety evaluation scenario, participants rated the performance of a simulated AI that classified traffic scenes involving people as dangerous or not. These classification decisions were explained via concepts in the form of similar image snippets. The latter differed in their match with the classified image, either regarding a highly relevant feature (i.e., people's relation to tracks) or a less relevant feature (i.e., people's action). Contrary to the hypotheses, concepts that generalised over less relevant features were rated lower than concepts that matched the classified image precisely. Moreover, their ratings were no better than those for systematic misrepresentations of the less relevant feature. Conversely, participants were highly sensitive to imprecisions in relevant features. These findings cast doubts on the assumption that people can easily infer from C-XAI outputs whether AI models have gained a deeper understanding of complex situations.
View on arXiv