194
v1v2v3 (latest)

Beyond Autocomplete: Designing CopilotLens Towards Transparent and Explainable AI Coding Agents

Main:6 Pages
3 Figures
Bibliography:5 Pages
1 Tables
Appendix:4 Pages
Abstract

AI-powered code assistants are widely used to generate code completions, significantly boosting developer productivity. However, these tools typically present suggestions without explaining their rationale, leaving their decision-making process inscrutable. This opacity hinders developers' ability to critically evaluate outputs, form accurate mental models, and calibrate trust in the system. To address this, we introduce CopilotLens, a novel interactive framework that reframes code completion from a simple suggestion into a transparent, explainable interaction. CopilotLens operates as an explanation layer that reconstructs the AI agent's "thought process" through a dynamic, two-level interface. The tool aims to surface both high-level code changes and the specific codebase context influences. This paper presents the design and rationale of CopilotLens, offering a concrete framework and articulating expectations on deepening comprehension and calibrated trust, which we plan to evaluate in subsequent work.

View on arXiv
Comments on this paper