215

Thompson Sampling in Function Spaces via Neural Operators

Main:10 Pages
6 Figures
Bibliography:4 Pages
2 Tables
Appendix:21 Pages
Abstract

We propose an extension of Thompson sampling to optimization problems over function spaces where the objective is a known functional of an unknown operator's output. We assume that functional evaluations are inexpensive, while queries to the operator (such as running a high-fidelity simulator) are costly. Our algorithm employs a sample-then-optimize approach using neural operator surrogates. This strategy avoids explicit uncertainty quantification by treating trained neural operators as approximate samples from a Gaussian process. We provide novel theoretical convergence guarantees, based on Gaussian processes in the infinite-dimensional setting, under minimal assumptions. We benchmark our method against existing baselines on functional optimization tasks involving partial differential equations and other nonlinear operator-driven phenomena, demonstrating improved sample efficiency and competitive performance.

View on arXiv
Comments on this paper