ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.22774
262
0
v1v2v3v4 (latest)

Bridging Ethical Principles and Algorithmic Methods: An Alternative Approach for Assessing Trustworthiness in AI Systems

28 June 2025
Michael Papademas
Xenia Ziouvelou
Antonis Troumpoukis
Vangelis Karkaletsis
ArXiv (abs)PDFHTML
Main:31 Pages
14 Figures
6 Tables
Abstract

Artificial Intelligence (AI) technology epitomizes the complex challenges posed by human-made artifacts, particularly those widely integrated into society and exerting significant influence, highlighting potential benefits and their negative consequences. While other technologies may also pose substantial risks, AI's pervasive reach makes its societal effects especially profound. The complexity of AI systems, coupled with their remarkable capabilities, can lead to a reliance on technologies that operate beyond direct human oversight or understanding. To mitigate the risks that arise, several theoretical tools and guidelines have been developed, alongside efforts to create technological tools aimed at safeguarding Trustworthy AI. The guidelines take a more holistic view of the issue but fail to provide techniques for quantifying trustworthiness. Conversely, while technological tools are better at achieving such quantification, they lack a holistic perspective, focusing instead on specific aspects of Trustworthy AI. This paper aims to introduce an assessment method that combines the ethical components of Trustworthy AI with the algorithmic processes of PageRank and TrustRank. The goal is to establish an assessment framework that minimizes the subjectivity inherent in the self-assessment techniques prevalent in the field by introducing algorithmic criteria. The application of our approach indicates that a holistic assessment of an AI system's trustworthiness can be achieved by providing quantitative insights while considering the theoretical content of relevant guidelines.

View on arXiv
Comments on this paper