ParticleFormer: A 3D Point Cloud World Model for Multi-Object, Multi-Material Robotic Manipulation

3D world models (i.e., learning-based 3D dynamics models) offer a promising approach to generalizable robotic manipulation by capturing the underlying physics of environment evolution conditioned on robot actions. However, existing 3D world models are primarily limited to single-material dynamics using a particle-based Graph Neural Network model, and often require time-consuming 3D scene reconstruction to obtain 3D particle tracks for training. In this work, we present ParticleFormer, a Transformer-based point cloud world model trained with a hybrid point cloud reconstruction loss, supervising both global and local dynamics features in multi-material, multi-object robot interactions. ParticleFormer captures fine-grained multi-object interactions between rigid, deformable, and flexible materials, trained directly from real-world robot perception data without an elaborate scene reconstruction. We demonstrate the model's effectiveness both in 3D scene forecasting tasks, and in downstream manipulation tasks using a Model Predictive Control (MPC) policy. In addition, we extend existing dynamics learning benchmarks to include diverse multi-material, multi-object interaction scenarios. We validate our method on six simulation and three real-world experiments, where it consistently outperforms leading baselines by achieving superior dynamics prediction accuracy and less rollout error in downstream visuomotor tasks. Experimental videos are available atthis https URL.
View on arXiv