Improve Underwater Object Detection through YOLOv12 Architecture and Physics-informed Augmentation

Underwater object detection is crucial for autonomous navigation, environmental monitoring, and marine exploration, but it is severely hampered by light attenuation, turbidity, and occlusion. Current methods balance accuracy and computational efficiency, but they have trouble deploying in real-time under low visibility conditions. Through the integration of physics-informed augmentation techniques with the YOLOv12 architecture, this study advances underwater detection. With Residual ELAN blocks to preserve structural features in turbid waters and Area Attention to maintain large receptive fields for occluded objects while reducing computational complexity. Underwater optical properties are addressed by domain-specific augmentations such as turbulence adaptive blurring, biologically grounded occlusion simulation, and spectral HSV transformations for color distortion. Extensive tests on four difficult datasets show state-of-the-art performance, with Brackish data registering 98.30% mAP at 142 FPS. YOLOv12 improves occlusion robustness by 18.9%, small-object recall by 22.4%, and detection precision by up to 7.94% compared to previous models. The crucial role of augmentation strategy is validated by ablation studies. This work offers a precise and effective solution for conservation and underwater robotics applications.
View on arXiv@article{nguyen2025_2506.23505, title={ Improve Underwater Object Detection through YOLOv12 Architecture and Physics-informed Augmentation }, author={ Tinh Nguyen }, journal={arXiv preprint arXiv:2506.23505}, year={ 2025 } }