ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.00090
76
0
v1v2v3 (latest)

Generating Heterogeneous Multi-dimensional Data : A Comparative Study

30 June 2025
Michael Corbeau
Emmanuelle Claeys
Mathieu Serrurier
Pascale Zaraté
    DiffM
ArXiv (abs)PDFHTML
Main:4 Pages
6 Figures
Bibliography:2 Pages
Appendix:1 Pages
Abstract

Allocation of personnel and material resources is highly sensible in the case of firefighter interventions. This allocation relies on simulations to experiment with various scenarios. The main objective of this allocation is the global optimization of the firefighters response. Data generation is then mandatory to study various scenarios In this study, we propose to compare different data generation methods. Methods such as Random Sampling, Tabular Variational Autoencoders, standard Generative Adversarial Networks, Conditional Tabular Generative Adversarial Networks and Diffusion Probabilistic Models are examined to ascertain their efficacy in capturing the intricacies of firefighter interventions. Traditional evaluation metrics often fall short in capturing the nuanced requirements of synthetic datasets for real-world scenarios. To address this gap, an evaluation of synthetic data quality is conducted using a combination of domain-specific metrics tailored to the firefighting domain and standard measures such as the Wasserstein distance. Domain-specific metrics include response time distribution, spatial-temporal distribution of interventions, and accidents representation. These metrics are designed to assess data variability, the preservation of fine and complex correlations and anomalies such as event with a very low occurrence, the conformity with the initial statistical distribution and the operational relevance of the synthetic data. The distribution has the particularity of being highly unbalanced, none of the variables following a Gaussian distribution, adding complexity to the data generation process.

View on arXiv
Comments on this paper