304

Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation

Main:9 Pages
7 Figures
Bibliography:2 Pages
7 Tables
Appendix:20 Pages
Abstract

Effective agent performance relies on the ability to compose tools and agents into effective workflows. However, progress in Large Language Model (LLM) planning and reasoning is limited by the scarcity of scalable, reliable evaluation data. This study addresses this limitation by identifying a suitable workflow domain for LLM application. I introduce NL2Flow, a fully automated system for parametrically generating planning problems, which are expressed in natural language, a structured intermediate representation, and formal PDDL, and rigorously evaluating the quality of generated plans. NL2Flow generates a dataset of 2296 low-difficulty problems in automated workflow generation and evaluates multiple open-sourced, instruct-tuned LLMs without task-specific optimization or architectural modifications. Results reveal that the highest performing model achieved 86% success in generating valid plans and 69% in generating optimal plans, specifically for problems with feasible plans. Regression analysis shows that the influence of problem characteristics on plan generation is contingent on both model and prompt design. To investigate the potential of LLMs as natural language-to-JSON translators for workflow definition, and to facilitate integration with downstream symbolic computation tools and a symbolic planner, I evaluated the LLM's translation performance on natural language workflow descriptions. I observed that translating natural language into a JSON representation of a workflow problem yielded a lower success rate than generating a plan directly, suggesting that unnecessary decomposition of the reasoning task may degrade performance and highlighting the benefit of models capable of reasoning directly from natural language to action. As LLM reasoning scales to increasingly complex problems, understanding the shifting bottlenecks and sources of error within these systems will be crucial.

View on arXiv
Comments on this paper