5
0

Transformer-based EEG Decoding: A Survey

Haodong Zhang
Hongqi Li
Main:11 Pages
9 Figures
Bibliography:4 Pages
Appendix:9 Pages
Abstract

Electroencephalography (EEG) is one of the most common signals used to capture the electrical activity of the brain, and the decoding of EEG, to acquire the user intents, has been at the forefront of brain-computer/machine interfaces (BCIs/BMIs) research. Compared to traditional EEG analysis methods with machine learning, the advent of deep learning approaches have gradually revolutionized the field by providing an end-to-end long-cascaded architecture, which can learn more discriminative features automatically. Among these, Transformer is renowned for its strong handling capability of sequential data by the attention mechanism, and the application of Transformers in various EEG processing tasks is increasingly prevalent. This article delves into a relevant survey, summarizing the latest application of Transformer models in EEG decoding since it appeared. The evolution of the model architecture is followed to sort and organize the related advances, in which we first elucidate the fundamentals of the Transformer that benefits EEG decoding and its direct application. Then, the common hybrid architectures by integrating basic Transformer with other deep learning techniques (convolutional/recurrent/graph/spiking neural netwo-rks, generative adversarial networks, diffusion models, etc.) is overviewed in detail. The research advances of applying the modified intrinsic structures of customized Transformer have also been introduced. Finally, the current challenges and future development prospects in this rapidly evolving field are discussed. This paper aims to help readers gain a clear understanding of the current state of Transformer applications in EEG decoding and to provide valuable insights for future research endeavors.

View on arXiv
@article{zhang2025_2507.02320,
  title={ Transformer-based EEG Decoding: A Survey },
  author={ Haodong Zhang and Hongqi Li },
  journal={arXiv preprint arXiv:2507.02320},
  year={ 2025 }
}
Comments on this paper