ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.02799
10
0

Is Reasoning All You Need? Probing Bias in the Age of Reasoning Language Models

3 July 2025
Riccardo Cantini
Nicola Gabriele
Alessio Orsino
Domenico Talia
ArXiv (abs)PDFHTML
Main:10 Pages
4 Figures
Bibliography:2 Pages
Abstract

Reasoning Language Models (RLMs) have gained traction for their ability to perform complex, multi-step reasoning tasks through mechanisms such as Chain-of-Thought (CoT) prompting or fine-tuned reasoning traces. While these capabilities promise improved reliability, their impact on robustness to social biases remains unclear. In this work, we leverage the CLEAR-Bias benchmark, originally designed for Large Language Models (LLMs), to investigate the adversarial robustness of RLMs to bias elicitation. We systematically evaluate state-of-the-art RLMs across diverse sociocultural dimensions, using an LLM-as-a-judge approach for automated safety scoring and leveraging jailbreak techniques to assess the strength of built-in safety mechanisms. Our evaluation addresses three key questions: (i) how the introduction of reasoning capabilities affects model fairness and robustness; (ii) whether models fine-tuned for reasoning exhibit greater safety than those relying on CoT prompting at inference time; and (iii) how the success rate of jailbreak attacks targeting bias elicitation varies with the reasoning mechanisms employed. Our findings reveal a nuanced relationship between reasoning capabilities and bias safety. Surprisingly, models with explicit reasoning, whether via CoT prompting or fine-tuned reasoning traces, are generally more vulnerable to bias elicitation than base models without such mechanisms, suggesting reasoning may unintentionally open new pathways for stereotype reinforcement. Reasoning-enabled models appear somewhat safer than those relying on CoT prompting, which are particularly prone to contextual reframing attacks through storytelling prompts, fictional personas, or reward-shaped instructions. These results challenge the assumption that reasoning inherently improves robustness and underscore the need for more bias-aware approaches to reasoning design.

View on arXiv
@article{cantini2025_2507.02799,
  title={ Is Reasoning All You Need? Probing Bias in the Age of Reasoning Language Models },
  author={ Riccardo Cantini and Nicola Gabriele and Alessio Orsino and Domenico Talia },
  journal={arXiv preprint arXiv:2507.02799},
  year={ 2025 }
}
Comments on this paper