155
v1v2v3 (latest)

Graph Neural Networks for Electricity Load Forecasting

Main:17 Pages
7 Figures
Bibliography:5 Pages
2 Tables
Abstract

Forecasting electricity demand is increasingly challenging as energy systems become more decentralized and intertwined with renewable sources. Graph Neural Networks (GNNs) have recently emerged as a powerful paradigm to model spatial dependencies in load data while accommodating complex non-stationarities. This paper introduces a comprehensive framework that integrates graph-based forecasting with attention mechanisms and ensemble aggregation strategies to enhance both predictive accuracy and interpretability. Several GNN architectures -- including Graph Convolutional Networks, GraphSAGE, APPNP, and Graph Attention Networks -- are systematically evaluated on synthetic, regional (France), and fine-grained (UK) datasets. Empirical results demonstrate that graph-aware models consistently outperform conventional baselines such as Feed Forward Neural Networks and foundation models like TiREX. Furthermore, attention layers provide valuable insights into evolving spatial interactions driven by meteorological and seasonal dynamics. Ensemble aggregation, particularly through bottom-up expert combination, further improves robustness under heterogeneous data conditions. Overall, the study highlights the complementarity between structural modeling, interpretability, and robustness, and discusses the trade-offs between accuracy, model complexity, and transparency in graph-based electricity load forecasting.

View on arXiv
Comments on this paper