ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.09329
56
0
v1v2 (latest)

When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in LLM Coding Agents

12 July 2025
Matous Kozak
Roshanak Zilouchian Moghaddam
Siva Sivaraman
    LLMAGELM
ArXiv (abs)PDFHTML
Main:8 Pages
2 Figures
4 Tables
Appendix:7 Pages
Abstract

LLM-based coding agents are rapidly being deployed in software development, yet their security implications remain poorly understood. These agents, while capable of accelerating software development, may inadvertently introduce insecure practices. We conducted the first systematic security evaluation of autonomous coding agents, analyzing over 12,000 actions across five state-of-the-art models (GPT-4o, GPT-4.1, Claude variants) on 93 real-world software setup tasks. Our findings reveal significant security concerns: 21% of agent trajectories contained insecure actions, with models showing substantial variation in security behavior. We developed a high-precision detection system that identified four major vulnerability categories, with information exposure (CWE-200) being the most prevalent one. We also evaluated mitigation strategies including feedback mechanisms and security reminders with various effectiveness between models. GPT-4.1 demonstrated exceptional security awareness with 96.8% mitigation success. Our work provides the first comprehensive framework for evaluating coding agent security and highlights the need for security-aware design of next generation LLM-based coding agents.

View on arXiv
Comments on this paper