ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.10029
75
0
v1v2 (latest)

Memory-Efficient Personalization of Text-to-Image Diffusion Models via Selective Optimization Strategies

14 July 2025
Seokeon Choi
S. Park
Hyoungwoo Park
J. Kim
Sungrack Yun
ArXiv (abs)PDFHTML
Main:4 Pages
3 Figures
Bibliography:1 Pages
1 Tables
Abstract

Memory-efficient personalization is critical for adapting text-to-image diffusion models while preserving user privacy and operating within the limited computational resources of edge devices. To this end, we propose a selective optimization framework that adaptively chooses between backpropagation on low-resolution images (BP-low) and zeroth-order optimization on high-resolution images (ZO-high), guided by the characteristics of the diffusion process. As observed in our experiments, BP-low efficiently adapts the model to target-specific features, but suffers from structural distortions due to resolution mismatch. Conversely, ZO-high refines high-resolution details with minimal memory overhead but faces slow convergence when applied without prior adaptation. By complementing both methods, our framework leverages BP-low for effective personalization while using ZO-high to maintain structural consistency, achieving memory-efficient and high-quality fine-tuning. To maximize the efficacy of both BP-low and ZO-high, we introduce a timestep-aware probabilistic function that dynamically selects the appropriate optimization strategy based on diffusion timesteps. This function mitigates the overfitting from BP-low at high timesteps, where structural information is critical, while ensuring ZO-high is applied more effectively as training progresses. Experimental results demonstrate that our method achieves competitive performance while significantly reducing memory consumption, enabling scalable, high-quality on-device personalization without increasing inference latency.

View on arXiv
Comments on this paper