246

Frequency Regulation for Exposure Bias Mitigation in Diffusion Models

Main:8 Pages
8 Figures
Bibliography:2 Pages
16 Tables
Appendix:1 Pages
Abstract

Diffusion models exhibit impressive generative capabilities but are significantly impacted by exposure bias. In this paper, we make a key observation: the energy of predicted noisy samples in the reverse process continuously declines compared to perturbed samples in the forward process. Building on this, we identify two important findings: 1) The reduction in energy follows distinct patterns in the low-frequency and high-frequency subbands; 2) The subband energy of reverse-process reconstructed samples is consistently lower than that of forward-process ones, and both are lower than the original data samples. Based on the first finding, we introduce a dynamic frequency regulation mechanism utilizing wavelet transforms, which separately adjusts the low- and high-frequency subbands. Leveraging the second insight, we derive the rigorous mathematical form of exposure bias. It is worth noting that, our method is training-free and plug-and-play, significantly improving the generative quality of various diffusion models and frameworks with negligible computational cost. The source code is available at this https URL.

View on arXiv
Comments on this paper