ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.10961
5
0

EquiContact: A Hierarchical SE(3) Vision-to-Force Equivariant Policy for Spatially Generalizable Contact-rich Tasks

15 July 2025
Joohwan Seo
Arvind Kruthiventy
Soomi Lee
Megan Teng
Xiang Zhang
Seoyeon Choi
Jongeun Choi
Roberto Horowitz
ArXiv (abs)PDFHTML
Main:7 Pages
9 Figures
Bibliography:1 Pages
4 Tables
Appendix:3 Pages
Abstract

This paper presents a framework for learning vision-based robotic policies for contact-rich manipulation tasks that generalize spatially across task configurations. We focus on achieving robust spatial generalization of the policy for the peg-in-hole (PiH) task trained from a small number of demonstrations. We propose EquiContact, a hierarchical policy composed of a high-level vision planner (Diffusion Equivariant Descriptor Field, Diff-EDF) and a novel low-level compliant visuomotor policy (Geometric Compliant ACT, G-CompACT). G-CompACT operates using only localized observations (geometrically consistent error vectors (GCEV), force-torque readings, and wrist-mounted RGB images) and produces actions defined in the end-effector frame. Through these design choices, we show that the entire EquiContact pipeline is SE(3)-equivariant, from perception to force control. We also outline three key components for spatially generalizable contact-rich policies: compliance, localized policies, and induced equivariance. Real-world experiments on PiH tasks demonstrate a near-perfect success rate and robust generalization to unseen spatial configurations, validating the proposed framework and principles. The experimental videos can be found on the project website:this https URL

View on arXiv
Comments on this paper