Enhancing Autonomous Manipulator Control with Human-in-loop for Uncertain Assembly Environments

This study presents an advanced approach to enhance robotic manipulation in uncertain and challenging environments, with a focus on autonomous operations augmented by human-in-the-loop (HITL) control for lunar missions. By integrating human decision-making with autonomous robotic functions, the research improves task reliability and efficiency for space applications. The key task addressed is the autonomous deployment of flexible solar panels using an extendable ladder-like structure and a robotic manipulator with real-time feedback for precision. The manipulator relays position and force-torque data, enabling dynamic error detection and adaptive control during deployment. To mitigate the effects of sinkage, variable payload, and low-lighting conditions, efficient motion planning strategies are employed, supplemented by human control that allows operators to intervene in ambiguous scenarios. Digital twin simulation enhances system robustness by enabling continuous feedback, iterative task refinement, and seamless integration with the deployment pipeline. The system has been tested to validate its performance in simulated lunar conditions and ensure reliability in extreme lighting, variable terrain, changing payloads, and sensor limitations.
View on arXiv