5
0

A Multi-View High-Resolution Foot-Ankle Complex Point Cloud Dataset During Gait for Occlusion-Robust 3D Completion

Jie-Wen Li
Zi-Han Ye
Qingyuan Zhou
Jiayi Song
Ying He
Ben Fei
Wen-Ming Chen
Main:8 Pages
10 Figures
Bibliography:4 Pages
2 Tables
Appendix:3 Pages
Abstract

The kinematics analysis of foot-ankle complex during gait is essential for advancing biomechanical research and clinical assessment. Collecting accurate surface geometry data from the foot and ankle during dynamic gait conditions is inherently challenging due to swing foot occlusions and viewing limitations. Thus, this paper introduces FootGait3D, a novel multi-view dataset of high-resolution ankle-foot surface point clouds captured during natural gait. Different from existing gait datasets that typically target whole-body or lower-limb motion, FootGait3D focuses specifically on the detailed modeling of the ankle-foot region, offering a finer granularity of motion data. To address this, FootGait3D consists of 8,403 point cloud frames collected from 46 subjects using a custom five-camera depth sensing system. Each frame includes a complete 5-view reconstruction of the foot and ankle (serving as ground truth) along with partial point clouds obtained from only four, three, or two views. This structured variation enables rigorous evaluation of 3D point cloud completion methods under varying occlusion levels and viewpoints. Our dataset is designed for shape completion tasks, facilitating the benchmarking of state-of-the-art single-modal (e.g., PointTr, SnowflakeNet, Anchorformer) and multi-modal (e.g., SVDFormer, PointSea, CSDN) completion networks on the challenge of recovering the full foot geometry from occluded inputs. FootGait3D has significant potential to advance research in biomechanics and multi-segment foot modeling, offering a valuable testbed for clinical gait analysis, prosthetic design, and robotics applications requiring detailed 3D models of the foot during motion. The dataset is now available atthis https URL.

View on arXiv
Comments on this paper