ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.11060
24
0

Personalized Exercise Recommendation with Semantically-Grounded Knowledge Tracing

15 July 2025
Yilmazcan Ozyurt
Tunaberk Almaci
Stefan Feuerriegel
Mrinmaya Sachan
    AI4Ed
ArXiv (abs)PDFHTML
Main:10 Pages
11 Figures
Bibliography:4 Pages
1 Tables
Appendix:16 Pages
Abstract

We introduce ExRec, a general framework for personalized exercise recommendation with semantically-grounded knowledge tracing. Our method builds on the observation that existing exercise recommendation approaches simulate student performance via knowledge tracing (KT) but they often overlook two key aspects: (a) the semantic content of questions and (b) the sequential, structured progression of student learning. To address this, our ExRec presents an end-to-end pipeline, from annotating the KCs of questions and learning their semantic representations to training KT models and optimizing several reinforcement learning (RL) methods. Moreover, we improve standard Q-learning-based continuous RL methods via a tailored model-based value estimation (MVE) approach that directly leverages the components of KT model in estimating cumulative knowledge improvement. We validate the effectiveness of our ExRec using various RL methods across four real-world tasks with different educational goals in online math learning. We further show that ExRec generalizes robustly to new, unseen questions and that it produces interpretable student learning trajectories. Together, our findings highlight the promise of KT-guided RL for effective personalization in education.

View on arXiv
Comments on this paper