ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.11071
7
0

LogTinyLLM: Tiny Large Language Models Based Contextual Log Anomaly Detection

15 July 2025
Isaiah Thompson Ocansey
Ritwik Bhattacharya
Tanmay Sen
    AI4TS
ArXiv (abs)PDFHTML
Main:7 Pages
2 Figures
Bibliography:1 Pages
2 Tables
Abstract

Log anomaly detection using traditional rule based or deep learning based methods is often challenging due to the large volume and highly complex nature of log sequence. So effective way of detection of anomalous sequence of logs is crucial for system maintenance and development. This paper proposes parameter efficient finetuning specifically low rank adaptation (LoRA) and adapter based approaches for finding contextual anomalies in sequence of logs in large log data set. It compares different tiny large language models (LLMs) on the Thunderbird dataset. The results show that LoRA based finetuning provides substantial performance improvements of 18 to 19 percentage over LogBert based full finetuning approach, achieving accuracy scores between 97.76% and 98.83% compared to 79.37%.

View on arXiv
Comments on this paper