ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.12890
97
2
v1v2 (latest)

DiffRhythm+: Controllable and Flexible Full-Length Song Generation with Preference Optimization

17 July 2025
Huakang Chen
Yuepeng Jiang
Guobin Ma
Chunbo Hao
Shuai Wang
Jixun Yao
Ziqian Ning
Meng Meng
Jian Luan
Lei Xie
    DiffM
ArXiv (abs)PDFHTML
Main:6 Pages
2 Figures
Bibliography:2 Pages
3 Tables
Abstract

Songs, as a central form of musical art, exemplify the richness of human intelligence and creativity. While recent advances in generative modeling have enabled notable progress in long-form song generation, current systems for full-length song synthesis still face major challenges, including data imbalance, insufficient controllability, and inconsistent musical quality. DiffRhythm, a pioneering diffusion-based model, advanced the field by generating full-length songs with expressive vocals and accompaniment. However, its performance was constrained by an unbalanced model training dataset and limited controllability over musical style, resulting in noticeable quality disparities and restricted creative flexibility. To address these limitations, we propose DiffRhythm+, an enhanced diffusion-based framework for controllable and flexible full-length song generation. DiffRhythm+ leverages a substantially expanded and balanced training dataset to mitigate issues such as repetition and omission of lyrics, while also fostering the emergence of richer musical skills and expressiveness. The framework introduces a multi-modal style conditioning strategy, enabling users to precisely specify musical styles through both descriptive text and reference audio, thereby significantly enhancing creative control and diversity. We further introduce direct performance optimization aligned with user preferences, guiding the model toward consistently preferred outputs across evaluation metrics. Extensive experiments demonstrate that DiffRhythm+ achieves significant improvements in naturalness, arrangement complexity, and listener satisfaction over previous systems.

View on arXiv
Comments on this paper