197

Conan: A Chunkwise Online Network for Zero-Shot Adaptive Voice Conversion

Main:6 Pages
3 Figures
Bibliography:2 Pages
Abstract

Zero-shot online voice conversion (VC) holds significant promise for real-time communications and entertainment. However, current VC models struggle to preserve semantic fidelity under real-time constraints, deliver natural-sounding conversions, and adapt effectively to unseen speaker characteristics. To address these challenges, we introduce Conan, a chunkwise online zero-shot voice conversion model that preserves the content of the source while matching the voice timbre and styles of reference speech. Conan comprises three core components: 1) a Stream Content Extractor that leverages Emformer for low-latency streaming content encoding; 2) an Adaptive Style Encoder that extracts fine-grained stylistic features from reference speech for enhanced style adaptation; 3) a Causal Shuffle Vocoder that implements a fully causal HiFiGAN using a pixel-shuffle mechanism. Experimental evaluations demonstrate that Conan outperforms baseline models in subjective and objective metrics. Audio samples can be found at this https URL.

View on arXiv
Comments on this paper